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We analyse various U(1)EM form factors of mesons at strong coupling in an N = 2

flavored version of N = 4 SYM which becomes conformal in the UV. The quark mass

breaks the conformal symmetry in the IR and generates a mass gap. In the appropriate

limit, the gravity dual is described in terms of probe D7-branes in AdS5×S5. By studying

the D7 fluctuations we find the suitable terms in a “meson effective theory” which allows

us to compute the desired form factors, namely the γπρ and γf0ρ transition form factors.

At large q2 we find perfect agreement with the naive parton model counting, which is a

consequence of the conformal nature of our model in the UV. By using the same tools, we

can compute the γ∗γ∗π form factor. However this channel is more subtle and comparisons

to the QCD result are more involved.
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1. Introduction

Understanding the generic behavior of gauge theories remains one of the most fundamental

problems in theoretical physics. At weak coupling a perturbative treatment is amenable,

however the strong coupling dynamics represents an incredible challenge. It is believed

that this regime can be understood in terms of a string theory. This correspondence has

been made more precise for a certain class of gauge theories over the past decade, through

the use of gauge/gravity duality [1].

It is known that the dynamics of gauge theories differs significantly depending on

whether or not they contain fields in the fundamental representation of the gauge group.

One of the most obvious features of having such fields is that there is the possibility of

forming bound states. At weak coupling these bound states appear as positronium, i.e. a

system analogous to the hydrogen atom but composed of a quark and an anti-quark. In

order to probe the strong coupling dynamics of flavored gauge theories, it is interesting to

study these objects at large λ, where λ is the ’t Hooft coupling. A very natural tool to

adopt is that of gauge/gravity duality. However including fundamental matter is a difficult

problem. A step forward was taken in [2 – 5], where it was suggested that flavor can be

introduced as a new open string sector coming from an extra stack of branes (so-called

’flavor’ branes) intersecting the color branes. In the limit in which the number of flavor

branes is so small that they can be considered a small perturbation, we can perform the

geometric transition and replace the color branes by their near horizon geometry - where

we should consider the flavor branes as probes. This sort of quenched approximation has a

number of consequences, one of which is that the running of quarks in loops is absent. This

translates, in particular, into a vanishing beta function for the gauge coupling. However

in the case of massive flavors, the conformal symmetry is broken in the IR leading to the

existence of “mesons”. These bound states were studied for the first time in [6] (for reviews

see [7, 8]). It is only very recently that fully backreacted solutions, corresponding to an

unquenched approach, have been found in [9 – 14].

In this paper we will be interested in the strong coupling structure of these mesons.

Following the approach in [15], we will probe them with photons. As anticipated, in the

approximation we will work, the beta function for the gauge coupling vanishes. Then

it is to be expected that the large momentum transfer regime of the scatterings we will

be computing, which is insensitive to the IR relevant mass term, will be controlled by

conformal invariance. Related processes have been considered in the literature using a

gravity dual for QCD, such as [16 – 24], and also [25, 26] where gravitational form factors

have been computed. Note that in our case, the gravity dual captures the strong coupling

regime of the theory. Thus, as opposed to real QCD, the large momentum transfer regime

will be dominated by a strongly coupled conformal theory. Exactly as in [27, 28, 15], the

fact that conformal invariance is recovered in the UV is translated into a scaling compatible

with a naive parton counting.

We would like to stress again that the model we will be considering is quite different

from QCD. Even though both theories enjoy conformal symmetry for large q, this conformal

symmetry is quite different. For a start, QCD is weakly coupled while our model is strongly
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coupled. Besides, our model is a quenched flavored version of N = 4 SYM, which in

particular means that the underlying conformal symmetry is very much like that in N = 4.

Amongst other things this requires the presence of 3 adjoint chiral supermultiplets, which

will actually form part of the mesons. Since those fields are adjoints, they wouldn’t be called

partons even at weak coupling. Nevertheless they contribute non-trivially to change the ∆

of the mesons, translating into different particular scalings for our amplitudes compared to

the ones in real QCD for example (this shouldn’t be that surprising, since in the end we

have a different theory).

In order to study the mesons, we will consider the simplest theory admitting a gravity

dual and containing a mass gap, which can be engineered as a D3-D7 intersection in flat

space.1 In more adequate terminology, we will be computing electromagnetic transition

form factors. This requires us to couple the gauge theory to electromagnetism, however

from the point of view of the SU(Nc) dynamics, the U(1)EM is just a global symmetry.

Technically this allows us to consider the EM current as a U(1) subgroup in the SU(Nf ),

corresponding to the gauge field on the flavor brane.2 This will require us to find the

adequate couplings in the meson effective theory, allowing us to compute the desired form

factors. Note that in [15] the vector field probing the mesons was the full SU(Nf ). After

introducing the field theory and its gravity dual in section 2, we derive the corresponding

interaction lagrangian allowing us to compute such form factors in section 3. In section

4 we compute and analyze these transition form factors. In accordance with the results

in [15], we are able to match the expectations from QCD at large momentum transfer. This

is to be expected since, in that regime, both QCD and our theory are dominated purely

by conformal invariance. Interestingly we can make use of the interaction lagrangian to

compute the process γ∗γ∗π. As opposed to the form factors, this case is more contrived

and we do not have a fully satisfactory field theory picture. On the other hand, this process

will be related to the γ∗πρ form factor due to vector meson dominance in much the same

spirit as in QCD. In section 5 we examine the full amplitude, in which the analog of the

hadronic tensor exhibits a Callan-Gross relation. This is deeply connected with the helicity

structure of our amplitudes. We finish in section 6 with some comments and suggestions

for future directions.

2. The field theory and its gravity dual

The theory in question consists of N = 4 SYM coupled to Nf fundamental hypermultiplets

in such a way that the final theory preserves N = 2 supersymmetry. Generically the

hypermultiplets will be massive, and we will assume a diagonal mass matrix. It is important

to note that our theory is non-chiral even in the massless limit. In particular this means

that the flavor symmetry is just SU(Nf ). The field content is displayed in table 1 and the

superpotential reads

W = Q̃i(mq + Φ3)Q
i + ΦIΦJΦKǫ

IJK , (2.1)

1The massless limit of this theory was considered in [29], where quark scattering is computed along the

lines of [30]. It would be interesting to apply these methods to the massive (non-conformal) case.
2For example, this approach is similar to that in [31].
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SU(Nc) SU(Nf )

ΦI Adj 1

Qi
� �̄

Q̃i �̄ �

Table 1: Field content of the theory.

The ΦI , I = 1, 2, 3 are the 3 chiral superfields of the N = 4 SYM sector, whilst the

(Q, Q̃) flavor hypermultiplets break the supersymmetry down to N = 2. The mass term

additionally breaks the U(1)R symmetry. Let us set mq to zero for a moment. In that case

there is an R-symmetry under which RQ = RΦI
= 2

3 .3 Assuming we are close to a conformal

fixed point, we can compute the exact beta function of the theory by approximating γi ∼
3Ri − 2. It is then straightforward to see that

βgYM
=

d

d log µ

8π2

g2
YM

= −Nf . (2.2)

Thus we see that the theory is not asymptotically free, but rather develops a Landau pole

in the UV. However we will treat the theory in the large Nc limit. The beta function for

the ’t Hooft coupling reads

βλ =
d

d log µ

8π2

g2
YMNc

=
d

d log µ

8π2

λ
= −Nf

Nc
. (2.3)

Therefore in the limit in which we have a large number of colors and a finite number of

flavors in such a way that Nf/Nc ∼ 0 we can still make sense of the theory since it becomes

conformal. In the generic case in which there is a mass term, since it has a classical negative

beta function, the UV properties will not be changed from those of the massless case, and

we expect that our theory approaches a UV conformal point provided we are in the limit

Nf/Nc ∼ 0. Note that even though the gauge coupling has a vanishing beta function,

conformal invariance will be broken in the IR by the scale set by mq.

Let us note that the in this quenched approximation, the conformal invariance recov-

ered in the UV is directly inherited from that of N = 4 SYM, which in turn requires the

presence of 3 adjoint chiral supermultiplets which will actually form part of the meson

spectrum.

It is important to note that in the Nf/Nc ∼ 0 limit, non-perturbative effects will be

negligible. For example, the ADS superpotential gives no contribution, since the exponent

of the meson matrix is zero.

Let us finally discuss the global symmetries. The theory has an SU(2)R ×SU(2) global

symmetry, of which the SU(2)R is an R-symmetry (and therefore does not commute with

the supercharges), whilst the other SU(2) is a global symmetry. As noted above in the case

of massless hypermultiplets the R-symmetry is enhanced back to SU(2)R × U(1)R.

3This R-charge assignation is the one coming from a-maximization, and is indeed the one adapted to

match the beta function coming from the gravity description (see for example [32], or [33] for a discussion

with D7 branes).
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2.1 The gravity dual

The theory above can be engineered as a brane web. Consider the D3-D7 intersection

according to the following array:

1 2 3 4 5 6 7 8 9

NcD3 : × × ×
Nf D7 : × × × × × × ×

Working at small ’t Hooft coupling, upon taking the decoupling limit, the local dynamics

on the D7-branes decouples and appears as a global flavor symmetry in the effective 4-

dimensional field theory description. This field theory is precisely the one introduced above.

The 3-3 strings give rise to the N = 4 SYM fields, while the 3-7 strings generate the flavor

hypermultiplets.4

Without loss of generality let us localise the D3-branes at the origin of the (8, 9) plane.

Then the i-th such D7-brane will sit at a point ~zi = (xi
8, x

i
9), which is at a distance Li =

√

(xi
8)

2 + (xi
9)

2. This distance, in units of 2πα′, defines the mass of the i-th hypermultiplet.

However, for simplicity, we will assume that all the masses are equal, corresponding to a

configuration where all the D7 are in a single stack located at ~z = (x8, x9). In that case

we recover the full SU(Nf ) flavor symmetry with mq = L/(2πα′).

We can provide a closed string description of the system which captures the strong

coupling regime of the theory by considering the gravity dual of the above system. In

the Nc/Nf ∼ 0 limit the backreaction of the D7-branes is negligible. Then, an accurate

description of the system can be achieved by considering Nf probe D7 in the near horizon

of the background sourced by the Nc D3-branes. The background is then simply AdS5×S5

which has a constant dilaton, translating into a vanishing beta function for the gauge theory

’t Hooft coupling in agreement with our discussion above.

In order to describe the flavor D7 embeddings, we can write the AdS5 × S5 metric as

ds2 =
~x2 + ~z2

R2
dx2

1,3 +
R2

~x2 + ~z2
(d~x2 + d~z2) , (2.4)

where ~x = (x4, · · · , x7). Working in static gauge, the D7-branes will have as worldvolume

coordinates (x1,3, ~x), whilst sitting at fixed ~z2 = L2. It is now straightforward to write the

induced metric on them in polar coordinates as

ds2D7 =
(r2 + L2)

R2
dx2

1,3 +
R2

(r2 + L2)
(dr2 + r2dΩ2

3) , (2.5)

As usual, the radial coordinate on theD7 will have the interpretation of holographic energy.

We can now see how at large r, corresponding to the UV of the field theory, the metric

approaches AdS5×S3. Additionally, since the ’t Hooft coupling is constant, we see that the

theory approaches a conformal fixed point in the UV. However in the IR, the metric above

deviates from pure AdS because of the presence of the IR scale L. Since mq = L/(2πα′)

4Note that the 7-7 strings are non dynamical in the gauge theory.
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we see that conformal invariance is lost because of the scale mq, which introduces a mass

gap in accordance with the field theory analysis above.

From the supergravity we can also read off the resulting R-symmetry of the field theory.

The ~x coordinates on the D7 enjoy an SO(4) ∼ SU(2) × SU(2) symmetry. However the

AdS5 ×S5 background also has a 4-form RR potential which can couple to the D7. Indeed

the symmetry which interchanges the two SU(2) is broken by the Chern-Simons term on

the D7-branes. Therefore one of the SU(2) becomes the SU(2)R while the other remains

as the global symmetry SU(2). In the case of massless quarks, the D7 sit on top of the D3-

branes and therefore we recover rotational invariance in the (8, 9) plane, which corresponds

to the U(1)R.

3. Effective meson theory from SUGRA

Since our theory is not conformal in the IR we expect it develops a mass gap, generating a

meson spectrum. At weak coupling these mesons are positronium-like systems, however we

are interested in their strong coupling description. In order to investigate this we should

analyze the 3-7 strings corresponding to the quark fields, but in the dual gravity descrip-

tion which captures the strong coupling. As we have argued before, after the geometric

transition the strong coupling gravity dual is in terms of Nf probe D7 in the near-horizon

of the D3 background. Quarks, therefore, correspond to strings hanging from the flavor

branes, and quark bound states, i.e. the mesons we want to study, will correspond to 7-7

strings. One can see that these 7-7 strings fall into two distinct sectors: large macroscopic

spinning strings corresponding to mesons with large spin; and small strings captured by the

flavor D7 fluctuations corresponding to spin 0,1 mesons. These mesons were first studied

in [6].

The mass of the low spin mesons with arbitrary quantum numbers M is of order

mM = mq/
√
λ, as opposed to the mass of the high spin mesons which is at least of

order mMλ
1
4 . Therefore in the strong coupling regime we see that higher spin mesons

are much more massive than low spin mesons. This hierarchy allows us to concentrate

on DBI mesons whilst forgetting about the more stringy large spin states. Therefore for

the mesons of interest, the spectrum can be computed by considering fluctuations, up to

quadratic order, of the DBI+CS action of the probe flavor branes. Let us consider our

D7 to be localised at ~z = (L, 0) where the scalar fluctuations will be ~z = (L + Φ1,Φ2).

In order to have canonical mass dimensions we must re-scale the field to Φi = 2πl2sχi.

Additionally, we have to take into account the fluctuations of the gauge field on the D7.

After considering the quadratic expansion for the flavor branes action, one can see that the

scalar wavefunction corresponding to a field of mass mn,l is given by (see [6] for example)

χi = epf xΦM(r)Y l ; m2
M = m2

n,l =
2m2

q

λ
(n+ l + 1)(n + l + 2) , (3.1)

where Y l is the S3 spherical harmonic which specifies the SU(2)R×SU(2) quantum numbers

of the meson ( l
2 ,

l
2). The function ΦM is a radial function with quantum numbers M =

– 6 –
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{n, l} given by

ΦM = Φn,l =
w

l
2

(1 − w)
l
2

2F1(−1 − l − n, 2 + l + n, l + 2, w) , (3.2)

where we have introduced the coordinate w defined through

r2

L2
=

w

1 − w
; w ∈ [0, 1] . (3.3)

From the asymptotic behavior of this mode one can see that it is dual to a scalar

operator of conformal dimension ∆ = l + 3, which schematically reads (see e.g. [8])

MI = ψ̃Q̃σ
IφlψQ + q̃φIφlq, (3.4)

where ψQ, ψ̃Q̃ are the fermions in the Q, Q̃ supermultiplets, q, q̃ are the scalars and φ is

the scalar in Φ. Note that actually Φ explicitly appears as a part of the meson.

From the eigenmodes of the vector field on the D7-brane we get a tower of massive

spin-1 ρ mesons whose wavefunctions are (again see [6] for more detail)

ρµ = ǫµe
pxΦII

M (r)Y l ; m2
M = m2

n,l =
2m2

q

λ
(n+ l + 1)(n + l + 2) ; (3.5)

where the polarization vector satisfies the gauge condition ǫ · p = 0. The Y l is the l-th

spherical harmonic specifying the SU(2)R × SU(2) ( l
2 ,

l
2) representation, whilst ΦII

M is a

radial function with quantum numbers M = {n, l} given by

ΦII
M = ΦII

n,l =
w

l
2

(1 − w)
l
2

2F1(2 + l + n,−1 − l − n, l + 2, w) . (3.6)

This wavefunction corresponds to a spin-1 operator of conformal dimension ∆ = l + 3

schematically given by [15, 8]

J µ = q†φl∂µq − q̃φl∂µq̃† + · · · , (3.7)

Both the scalar and vector meson modes correspond to normalizable fluctuations. How-

ever, we can construct the non-normalizable fluctuations starting from the same equation

of motion. In particular we will be interested in the vector field non-normalizable mode

since, as clear from (3.7), the l = 0 case reduces to the flavor current. This current is

a global symmetry, exactly as EM is to QCD. Therefore we will refer to the “photon”

as the non-normalizable mode arising from the vector field on the D7-branes. The flavor

symmetry is SU(Nf ), but we will choose some U(1) subgroup as our electromagnetic cur-

rent. Therefore we will neglect the non-abelian dynamics on the D7-branes. From this

perspective our theory essentially reduces to that of a single flavor D7 brane. The explicit

form of the non-normalizable mode is given by [15]

Aµ = χµe
qxA(r)Y0 , χ · q = 0 , (3.8)

– 7 –
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where we keep explicit the (trivial) S3 dependence through Y0. However since this spherical

harmonic is a constant we will drop it in our computations. Also note that

A =
πα(1 + α)

sin(πα)
2F1(−α, 1 + α, 2, w) , α =

1

2

(

− 1 +

√

1 − q2λ

m2
q

)

. (3.9)

By expanding the effective DBI+CS action on the D7-branes to higher orders it is

possible to obtain the interacting terms of the meson effective field theory. It is to be

expected that each such term in that effective field theory is suppressed by extra powers of

Nc. Therefore we will keep the lowest order terms at which we find the desired interaction

vertices as the main contribution to the process in which we are interested. In our particular

case we want to probe the internal structure of mesons with photons. Since our photon

actually comes from the non-normalizable mode of the vector field on the brane, the lowest

order interactions will come from terms in the expansion of the DBI+CS which involve two

(not necessarily identical) mesons plus a gauge field, which we will interpret as the EM

current. Clearly at least one of the mesons should be a vector meson in order to contract

the indices of the EM current, so from this point of view, it is clear that we will find

interaction vertices allowing us to compute scalar-vector transition form factors. We will

confirm this by direct computation.

DBI action: starting with the DBI lagrangian for the D7-brane, it is convenient to

parametrize the fluctuations in terms of the matrix ǫ in such a way that the DBI reads

S = −T7

∫

r3
√

ĝ
√

det(1 + ǫ) ; ǫIJ = gIL(h
1
2∂L

~Φ∂J
~Φ + 2πα′FLJ) , (3.10)

Here capital latin indices run over the worldvolume coordinates of the D7, and
√
ĝ is the

determinant of the internal unit S3. Note that any overall factors of the warp factor cancel

out because of having D7-branes. It is important to stress that the fluctuation metric g

depends on the warp factor h, which explicitly depends on the fluctuations ~Φ. Therefore

even though we will expand in powers of ǫ, at each order a further expansion of g is implicit.

To lowest order we find that

√

det(1 + ǫ) = 1 +
1

2
Tr(ǫ) − 1

4
Tr(ǫ2) +

1

8
(Tr(ǫ))2 + . . . (3.11)

Clearly, the linear term will not contribute. From the quadratic terms, to lowest order

in the implicit expansion of g, we will obtain the quadratic action leading to the above

wavefunctions. However we will also get extra terms, which in particular contain the

interaction lagrangian

Si
DBI = −T7(2πα

′)2
∫

√

ĝr3
{

LR4

(r2 + L2)3
Φ1FµνFαβη

µαηνβ +
2L(r2 + L2)

R4
Φ1FriFrj ĝ

ij

+
L(r2 + L2)

R4
Φ1FijFklĝ

ikĝjl

}

. (3.12)

Here latin indices run over the S3, while greek ones are along Minkowski directions.

– 8 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
3

One can convince oneself that higher orders in the expansion of (3.11) will contribute

to higher point functions, so the expansion in (3.11) is indeed enough for our purposes.

In the interacting lagrangian we will assume that one of the field strengths corresponds

to a non-normalizable gauge field. By inspecting the non-normalizable mode above, it is

clear that the only contribution will come from the first term - which in turn requires the

other field strength to be that of the massive vector field.5 Therefore, the vertex on which

we will focus is

Si
DBI = −T7(2πα

′)3
∫

√

ĝr3
{

LR4

(r2 + L2)3
χ1FµνFαβη

µαηνβ

}

, (3.13)

where we have extracted the 2πα′ factor in Φ1 to write the lagrangian explicitly as a

coupling to χ1.

As advertised, our interaction involves a photon, a vector meson and a scalar meson.

This structure is deeply connected with the fact the flavors (and therefore the mesons)

come from fluctuations of a D7-brane. In the brane theory the scalars, being real, will not

exhibit minimal coupling to the vector field. Instead the elements we have to play with

are field strengths and derivatives of scalars. We may have wondered if we could get a

form factor with the same meson for in and out states. However it is clear that we cannot

achieve this, since that particular interaction could only come from Fµν times some tensor

made out of the derivatives of the field, and this vanishes by antisymmetry. It is worth

noting that if we include a background antisymmetric field, such as a magnetic B field or

a worldvolume instanton (going to the Higgs phase of the theory [34, 35]), this restriction

can be avoided. It would certainly be interesting to compare this with our results, which

are essentially probing the Coulomb branch of the theory.

CS action: the AdS5 × S5 background has a non-zero 4-form potential whose electric

component is given by

C(4) =
ρ4

R4
dx0 ∧ dx1 ∧ dx2 ∧ dx3 . (3.14)

where ρ2 = r2 + ~z2.

The relevant coupling in the CS of the flavor D7 is now

2πT7α
′

2

∫

C(4) ∧ F ∧ F . (3.15)

which we can integrate by parts to write as a function of the G(5)

2πT7α
′

2

∫

A ∧G(5) ∧ F . (3.16)

where we denote by G(5) the 5-form field strength derived from C(4), and A is the world-

volume vector field whose corresponding field strength is F . After some algebra one can

5The vector field on the D7 actually come in 3 modes, out of which we concentrated on the only one

which has spin 1. The other modes correspond to scalar fields, and one can convince oneself that they do

not couple to the interacting lagrangian above.

– 9 –
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see that

G(5) =
4R4

3(r2 + (L+ Φ1)2 + Φ2
2)

3
× (3.17)

×
(

r4

4
ω3 ∧ dx8 ∧ dx9 + r3x8dr ∧ ω3 ∧ dx9 − r3x9dr ∧ ω3 ∧ dx8

)

Since (3.15) contains two factors of the gauge field, the lowest order which contributes to

our interaction vertex will come from a term in G(5) containing just one factor of the scalar

fluctuation. Clearly this can only arise from the last two terms, where the pull-back of G(5)

forces us to select the fluctuation through its derivative along the Minkowski directions. It

is not hard to convince oneself that finally the relevant CS contribution is

Si
CS =

2T7(2πα
′)2R4L

3

∫

r3
√
ĝ

(r2 + L2)3
A ∧ dΦ2 ∧ F . (3.18)

Recalling that dΦ2 actually stands for the derivative along the Minkowski direction, and

extracting the 2πα′ dependence from Φ2, we can integrate this by parts to get

Si
CS =

T7(2πα
′)3R4L

3

∫

r3
√
ĝ

(r2 + L2)3

{

χ2FαβFµνǫ
αβµν

}

. (3.19)

The lagrangian above demands us to interpret χ2 as a pseudoscalar, since otherwise the

effective meson theory would violate parity. In the UV theory we can set the θ angle to

zero, which is dual to taking the RR scalar C(0) to zero.6 Since in the Nf/Nc ∼ 0 limit

all non-perturbative corrections are switched off, we would not expect any source of parity

violation; which demands us to consider χ2 as a pseudoscalar.

We can provide an additional motivation for this assignment by assuming that the D7-

branes are localised at a generic point ~L = (L1, L2). It is then straightforward to repeat

the computation above and show that the full interacting lagrangian (DBI+CS) actually

reads

Si = T7(2πα
′)3R4

∫

r3
√
ĝ

(r2 + ~L2)3

{

~L · ~χV FµνFαβη
αµηβν +

1

3
~L · ~χA FαβFµνǫ

αβµν

}

; (3.20)

where ~χV = (χ1, χ2) and ~χA = ǫijχ
i = (χ2,−χ1). Thus we see that the sign of the CS term

actually depends on the choice of skewness of the (8, 9) directions. We can consider the

interacting lagrangian above just at the level of pure field theory, and suppose now that

under a parity transformation ~x→ −~x we should also consider the combined transformation

(L1, L2) → (L2, L1)

(χ1, χ2) → (χ2, χ1) (3.21)

Under this transformation it is clear that ~L · ~χV behaves as a scalar, whilst ~L · ~χA picks an

extra minus sign compensating the minus sign picked up by FF̃ . Therefore the transfor-

mation (3.21) allows for conserved parity.

6Even if we took a pure gauge but non-vanishing C(0), it would not couple to this order; suggesting that

indeed our effective lagrangian is insensitive to the parity-violating sector of the theory.
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We would like to heuristically motivate it yet another way. We could start with the

SUGRA background and impose ~x→ −~x as a symmetry. Clearly the metric is left invari-

ant, however the electric part of the 5-form field strength picks up a minus sign. Since G(5)

must be self-dual we have to ensure that its magnetic part also picks a minus sign. By in-

spection of (3.17) one can achieve this by reversing the skewness of the (8, 9) plane. When

looking at the linearization of the 5-form one can check that it indeed reduces to (3.21).

If we now choose the particular vacuum L1 = 0, L2 = L we see that effectively it is like

considering χ1 as a scalar and χ2 as a pseudoscalar.

The final interaction lagrangian which we will be using reduces to

Si = −T7(2πα
′)3LR4

∫

r3
√
ĝ

(r2 + L2)3

{

χ1(F
A)µν(F ρ)αβη

µαηνβ +
1

3
χ2(F

A)αβ(F ρ)µνǫ
αβµν

}

,

(3.22)

where we have added the superscripts A and ρ to remind the reader that one of the field

strengths corresponds to the non-normalizable field dual to the photon, while the other

corresponds to the in/out ρ meson state (dubbed like this because of the resemblance of

the QCD ρ meson in that it is a vector meson which will experience VMD).

It is important to note the difference in the measure with respect to the form factors

computed in [15]. The additional suppression by (r2 + L2)−1 will be crucial in order to

get the expected large q2 behavior of our form factors. One can heuristically understand

this dependence in much the same spirit as how we motivated the scalar-vector-photon

vertex. Because of the DBI+CS structure, as discussed, this is the lowest order term we

could have. Additionally since the scalar appears without derivatives, it could only come

from the expansion of a term schematically of the form hF 2. In order to get a single

power of the scalar it should appear in the combination LΦ in order to have dimensions of

(length)2, however on dimensional grounds, each time this combination appears it must be

suppressed by an extra power of the other dimensionful quantity in the theory, namely the

combination r2 +L2. Therefore an extra suppression on (r2 +L2)−1 with respect to [15] is

to be expected.

4. EM transition form factors at strong coupling

Armed with the interacting lagrangian (3.22) we can now turn to the actual problem of

computing the electromagnetic form factors. As we discussed, we have to understand χ1

as a scalar and χ2 as a pseudoscalar. Even though this pseudoscalar is not the pseudo-

Goldstone boson of any broken chiral symmetry, we will call it π0, since at least its effective

couplings are identical to those of the neutral pion.7 In turn, the scalar behaves as a scalar

neutral meson such as the f0 (or σ).

Generically, the situation we will consider is that in figure (1), where the momenta are

chosen so that p+ q = p′.

7Maybe it would be more convenient to call it η′, since our theory does not have a chiral non-abelian

symmetry but has an approximate UV chiral U(1)R. It is also possible to argue that there should be a

pseudoscalar coupling to EM as χF F̃ .
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Figure 1: Transition form factors for π/f0 − ρ mesons

4.1 f0 − ρ transition form factor

Using the expressions for the non-normalizable vector field, scalar and vector normalizable

modes, it is straightforward to see that

〈f0,M |Jµ|ρ, ǫ,N〉 = 2T7(2πα
′)3LR4

(
∫

r3

(r2 + L2)3
AΦMΦII

Nδl,l′

)[

(p′ · q)ǫµ − (q · ǫ)p′µ
]

.

(4.1)

Here we have already performed the integral over the S3, which is simply
∫

√

ĝY lY l′ = δl,l′ , (4.2)

since the spherical harmonics are orthonormal eigenfunctions of the laplacian on S3.

Let us define the radial integral

In,m,l(q
2) =

∫

r3

(r2 + L2)3
AΦMΦII

Nδl,l′ =

∫

r3

(r2 + L2)3
AΦm,lΦ

II
n,l . (4.3)

It is important to notice that it will be a function of the momentum q of the off-shell

photon. Then

〈f0,M |Jµ|ρ, ǫ,N〉 = F σρ
n,m,l

[

(p′ · q)ǫµ − (q · ǫ)p′µ
]

; (4.4)

F σρ
n,m,l = 2T7(2πα

′)3LR4In,m,l(q
2) . (4.5)

Because of current conservation, qµ〈f0,M |Jµ|ρ, ǫ,N〉 = 0. Let us concentrate on the tensor

structure of the form factor. If we go to the rest frame of the vector meson the form factor

reduces to

〈f0|Jµ|ρ〉 ∼ mρ

[

− q0ǫµ − (q · ǫ)δ0µ
]

= mρ

[

− q0ǫ0δµ
0 − q0ǫiδµ

i + q0ǫ0δµ
0

]

= −mρq
0ǫiδµ

i . (4.6)

We might now choose to align ~q with the z direction. Current conservation requires then

that qµ〈f0|Jµ|ρ〉 = 0, which in turn implies that ~ǫ = (ǫx, ǫy, 0); explicitly showing that the

polarization of the vector meson is transverse. Therefore, only the vector part of ǫ gives a

– 12 –
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non-zero contribution to the transverse part of the off-shell current, reflecting the fact that

the transition is between a spin 0 and a spin 1 state, and thus should involve the spin 1

part of the current.

For later purposes, let us note that, in the Breit frame where ~p + ~p′ = 0, we will find

that all the momenta are of order q2.8 In that case, we see that roughly speaking, the large

q2 behaviour of the matrix element will be given by In,m,l(q
2)q2.

4.2 π − ρ transition form factor

It is also straightforward to evaluate the CS interaction term. It reads

〈π0,M |Jµ|ρ, ǫ,N〉 = F πρ
n,m,l ǫ

µναβǫνqαp
′
β ; (4.7)

F πρ
n,m,l =

4

3
T7(2πα

′)3LR4In,m,l(q
2) ; (4.8)

where In,m(q2) is the same integral (4.3) as above. One can check that also current con-

servation is satisfied and qµ〈π0,M |Jµ|ρ, ǫ,N〉 = 0.

Again we can go to the rest frame of the vector meson where

〈π0|Jµ|ρ〉 ∼ mρǫ
µνα0ǫνqα ∼ mρǫ

µij0ǫiqj (4.9)

and we again see that only the vector part of the polarization of the vector meson is involved

- and therefore only the spin 1 part of the current is involved in the interaction.

Note that again, in the Breit frame, the magnitude of the whole matrix element for

large q2 will be of the order In,m,l(q
2)q2. We also point to the results obtained in [16 – 20, 20]

for the form factor, albeit in a slightly different set-up.

4.3 q/~x dependence of the form factors

By inspection of the two form factors, we have that F πρ
n,m,l = 2

3F
σρ
n,m,l. Since in addition

F σρ
n,m,l ∼ In,m,l, we will loosely identify In,m,l with the form factors of interest. The fact

that both form factors are proportional to one another is due to SUSY, since both the two

scalars are in the same N = 2 massive supermultiplet.

In order to go further, we should study In,m,l. Following the method suggested in [15],

we can do the j-th integration of A with respect to w - which we will call aj. Recall that A

is a function of the photon momentum, so for integration we must recall that aj = aj(w, q
2).

Denoting by F the rest of the hypergeometric functions under the integral in (4.3), we can

iteratively integrate this by parts to obtain

In,m,l =

∫

AF =

∫

∂ωa1F = (a1F )|w=1
w=0 −

∫

a1∂ωF =

= (a1F )|w=1
w=0 − (a2∂ωF )|w=1

w=0 +

∫

a2∂
2
ωF = · · · . (4.10)

8In that frame ~p′ = −~p = ~q
2
, and we may choose ~q = (0, 0, q). A boost along the z direction connects

this frame with the rest frame of the vector meson. Since in the rest frame ǫ = (0,~ǫ⊥, 0), the vector meson

will be also transverse in the Breit frame. If we have ultra-relativistic hadrons, q0 ∼ 0, then p = ( |~q|
2

,− ~q
2
),

p′ = ( |~q|
2

, ~q

2
), q = (0, ~q).
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Figure 2: Vector meson dominance.

It can be easily checked that aj|w=0 = 0. The crucial observation then is that only a finite

number of derivatives of F are non-vanishing when evaluated at w = 1. We find that the

last non-zero derivative is the jmax = 2l + n+m+ 3. Analogously one can check that the

first non-zero derivative is the jmin = l + 2. This way we see that indeed

In,m,l =

jmax
∑

jmin

(−1)j aj+1(q
2) ∂j

wF ; (4.11)

where both aj+1 and ∂j
wF are evaluated at w = 1. By iteration one can, in principle,

determine the value of the integral by obtaining all the higher order coefficients.

We could take a seemingly different approach and make direct use of VMD (see ap-

pendix A). It is possible then to rewrite (4.3) as

In,m,l =
m2

q

λ

kmax
∑

k=0

fk,0 Rn,l,m,l,k,0

q2 +m2
k,0

; Rn,l,m,l,k,0 =

∫

r3

(r2 + L2)3
Φm,lΦ

II
n,lΦ

II
k,0 , (4.12)

where Rn,l,m,l,k,0 is proportional to the coupling constant between hadrons with the speci-

fied quantum numbers, and fk,0 is the decay constant of the vector meson with quantum

numbers (n, l = 0). A priori k in (4.12) should take values in the range k ∈ [0,∞). However

it can be checked that Rn,l,m,l,k,0 = 0 for k > kmax, with kmax = 2l + n + m + 2, which

truncates the sum and ensures its finiteness. Additionally we should point out that the

minimal k depends on the particular choice of (n,m). For example, for n = m the sum

extends all the way down to k = 0.

Expression (4.12) should coincide with (4.11). However, it has a compelling interpreta-

tion since it explicitly allows us to see the dependence on the decay and coupling constants.

Indeed expression (4.12) is the manifestation of VMD in gauge/gravity duality. It allows

us to regard the photon-hadron interaction as a photon going into a vector meson which

is indeed the one which interacts with the hadrons, in accordance with the vector meson

dominance principle. The pictorial representation is in figure (2).

It should be pointed that even though VMD naturally falls out in the gravity construc-

tion, universality does not generically hold. See [36] for further details on this.

The necessary agreement between (4.12) and (4.11) requires some, a priori, non-obvious

relation between masses, decay constants and coupling constants. We will make explicit

use of some of these properties below.
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It is expected that form factors in position space carry information about the charge

distribution of the hadrons. This interpretation is most straightforward for diagonal form

factors (i.e. form factors in which the in meson is identical to the out meson). However in

the case of off-diagonal form factors (transition form factors) we could think of it as the

distribution of charge at the interaction point.

There are, however, subtleties in how one should extract this kind of information in

position space from a form factor computed in momentum space. For example, in a non-

relativistic system the 3-dimensional Fourier transform of the form factor with respect to

~q would give the spatial charge distribution. However since our mesons have a very high

binding energy, one should expect our system to be highly relativistic. It has been argued

in [15] that, in order to have the right probabilistic interpretation (as well as a connection to

generalized PDF, see for example [37 – 39]), it is natural to switch to the large momentum

frame, and interpret the photon as probing the transverse structure of the hadron. As

suggested in [15], we might then consider aligning the initial hadron momentum along

the z direction, and boosting the system to large momentum along it. Then choosing

q = (0, ~q⊥, 0) we can perform a 2-dimensional Fourier transform

FT2

(

f(q)

)

=
1

2π

∫

d2~q⊥e
i~q⊥~x⊥f(q) ; FT2

(

1

q2 +m2
k,0

)

= K0(mk,0r) , (4.13)

where K0(x) is the corresponding Bessel function. The function obtained by means of

this 2d Fourier transform should be interpreted as a charge density in the transverse

space parametrized by the transverse radius r. Restricting to the case at hand we have,

from (4.12)

In,m,l =
m2

q

λ

kmax
∑

k

fk,0 Rn,l,m,l,k,0K0(mk,0r) . (4.14)

In the case of diagonal form factors, one possible definition of the size of the hadron is

〈r2〉 = 4
∂

∂q2
Fdiag(q

2)|q2=0 , (4.15)

where the factor of 4 accounts for the fact that this is a transverse (2-dimensional) charge

distribution. We will use this definition and interpret it as a measure of the size of the

region where the interaction takes place. Then using (4.12) we have, for the σρ transition

form factor

〈r2σρ〉 = 8T7(2πα
′)3LR4m2

qλ
−1

kmax
∑

k

fk,0 Rn,l,m,k,0

m4
k,0

. (4.16)

Unfortunately we have been unable to explicitly perform the above sum.

Finally let us note that, from the relation between F σρ and F πρ, we have 〈r2σρ〉 =
3
2 〈r2πρ〉, which follows trivially from the definitions of the two form factors.

Large q2 behavior: let us concentrate on the large q2 behavior of (4.3). The j-th

integration of A, aj , behaves like

aj → 4jj!

(

m2
q

λq2

)j+1

. (4.17)
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It is clear that the large q2 behavior of (4.3) will be controlled by the first non-zero derivative

of F at w = 1 (at w = 0 aj vanishes) since it will be the least suppressed term. As

anticipated, the first non-zero derivative is the l+ 2. Therefore we see that at large q2, the

integral (4.3) runs like

In,m → Cn,m,l

(

m2
q

λq2

)3+l

= Cn,m,l

(

m2
q

λq2

)∆

, (4.18)

where Cn,m,l is a numerical coefficient depending on n,m, l. Note that the q2 dependence is

completely independent of n,m, and just relies on the conformal dimension of the operators

involved. This is connected to the fact that the theory flows to a UV conformal point and

so we see that conformal invariance alone governs the structure of the form factors.

We could just as well use the alternate expression (4.12). Expanding (4.12) for large

q2 we have

In,m,l → In,m,l =
m2

q

λ

∑

j

(−1)j

(q2)j+1

(

∑

k

fk,0 Rn,l,m,l,k,0 (mk,0)
2j

)

. (4.19)

We can re-write this as

In,m,l→In,m,l =
∑

j

(−1)j4jj!

(

m2
q

λ q2

)j+1( 1

4jj!

∑

k

fk,0 Rn,l,m,l,k,0

(

√
λmk,0

mq

)2j)

, (4.20)

so we conclude that the coefficients in (4.11) can be written as

∂j
wF |w=1 =

1

4jj!

kmax
∑

k

fk,0 Rn,l,m,l,k,0

(√
λmk,0

mq

)2j

. (4.21)

This allows us to write the leading term for large q2 fixing the Cn,m,l above

In,m,l → (−1)l+2

( kmax
∑

k

(

λm2
k,0

m2
q

)(l+2)

fk,0 Rn,l,m,l,k,0

)(

m2
q

λq2

)∆

. (4.22)

Since from (4.11) we know that the first non-zero term is that with 1/(q2)l+3, we

conclude that
∑

k

fk,0 Rn,l,m,l,k,0 (mk,0)
2j = 0 ∀j < l + 2 . (4.23)

This is an important constraint on the algebraic structure. For later purposes, let us

consider the function (r 6= 0)

hj(r) =
∑

k

fk,0 Rn,l,m,l,k,0 (mk,0)
2j log

(

mk,0r

2

)

, (4.24)

Taking its r derivative we have

dhj(r)

dr
∼ 1

r

∑

k

fk,0 Rn,l,m,l,k,0 (mk,0)
2j ; (4.25)
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so that by using (4.23) we see that when j < l + 2, hj is actually a constant.

Let us analyze the form factor in position space. As argued above in order to have

a sensible physical interpretation we must boost the system to the infinite momentum

frame and assume q = (0, ~q⊥, 0). Then we will Fourier transform to obtain a function of

the transverse size r. The large q2 region corresponds to small r. Expanding (4.14) and

re-writing it in a suitable form, we see that for r ∼ 0

In,m,l →
m2

q√
λ

∑

k

∑

j

fk,0 Rn,l,m,l,k,0

22jj!

{

ψ(j) − log

(

mk,0r

2

)}

(

mk,0r
)2j

, (4.26)

where ψ(j) are numerical coefficients depending on j. The term dominating the sum above

will be the one with the lowest exponent for r. Using (4.23) and the fact that hj is constant

for any j < l + 2, we conclude that, up to a constant (which on physical grounds must be

zero), the small r dependence in transverse space is

F σρ
n,m,l ∼ F πρ

n,m,l ∼ In,m,l ∼ r2(l+2) log r ∼ (r2)∆−1 log r , (4.27)

where we have re-written the r power in terms of the conformal dimension of the operators

involved. Note that the scale in position space at large q2 is set by 1/ml+2,0.

General behavior going towards the IR: let us now analyse the IR behaviour, i.e.

the small q2 region. In position space this corresponds to the asymptotically large r region.

From the asymptotic behavior of the Bessel function we see that

In,m,l →
√
πm2

q√
2λ

∑

k

fk,0 Rn,l,m,l,k,0
e−mk,0r

√
mk,0r

∼
√
πm2

q√
2λ

f
k̂,0 Rn,l,m,l,k̂,0

e−m
k̂,0

r

√

m
k̂,0r

. (4.28)

Where k̂ is the lowest k for which Rn,l,m,l,k,0 does not vanish. As we pointed out, this

minimal k̂ depends on the particular choice of (n,m), which in turn sets the scale 1/m
k̂,0

of the measured charge distribution in position space for small q2.

4.4 Field theory expectations for the transition form factors

As we have discussed, the UV of our theory is described by a conformal point. Therefore

we expect the large q2 behavior of our form factors to be controlled purely by conformal

invariance, in much the same way as in QCD - where asymptotic freedom is responsible for

the vanishing beta function at large q2. However in that case the theory is weakly coupled

and one can make use of perturbative tools to study the behavior of diverse processes at

large q2 [40, 41] (see [42] for an exhaustive review).

Rather than looking directly to form factors, it is useful to consider the full matrix

element, i.e. taking into account the scaling of the tensor structure.9 In the Breit frame,

where all the momenta are of order q, we can identify the q-dependence of our matrix

element (recall equation (4.9)) as

〈π0, f0|Jµ|ρ〉 ∼ 1

(q2)∆−1
. (4.29)

9For example, our matrix elements are schematically I(q2) ǫµναβqαqβ ∼ I(q2) q2.
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On the other hand, for a conformal field theory at weak coupling, the expected scaling for

the transition form factor between a hadron h1 of helicity s1 and a hadron h2 of helicity

s2 is [42]

〈h1, s1|Jµ|h2, s2〉 ∼
1

q2n−3+|s1−s2|
; (4.30)

where n is the number of partons. Additionally, (4.30) requires us to impose the selection

rule that current helicity is given by λ = s1 + s2. We can can heuristically understand

this formula in a free parton model. Assume that h1, h2 are composed of n partons, each

carrying a fraction of the total momentum q of the hadron. The off-shell photon would

strike one of them which, in the Breit frame, forces the struck parton to recoil. Since we

are looking into elastic processes, for the hadron not to break we require the struck parton

to emit a gluon to force the other partons to recoil. After power counting in this naive

parton model it is easy to see that one recovers (4.30).

From (4.30) it is also clear that form factors in which helicity change is involved are

suppressed by additional powers of q [43, 44]. It is easy to understand this in the naive

parton model. The reason is that the vector boson vertex does not change helicity unless

the partons are massive. In that case helicity flipping processes are suppressed by an extra

power of m/q.

The discussion above is not limited to weak coupling, since in the end the is tied

to conformal invariance (i.e. naive dimension counting as if the beta function was zero).

However, clearly it has to be modified in some way, since for a start the actual concept of

parton is not even well defined at strong coupling due to very fast interactions. Indeed,

a more correct derivation of the formula above can be done via an OPE analysis. This

way, one can actually obtain an accurate expression, which indeed looks like (4.30) where

n should be exchanged by the twist of the lowest twist operator capable of creating both

hadrons [27, 28]. Thus, (4.30) would get replaced by

〈h1, s1|Jµ|h2, s2〉 ∼
1

q2τO−3+|s1−s2|
; (4.31)

where τO is the twist of the lowest twist operator O triggering the transition. In real QCD,

for example, for a mesonic form factor, the lowest twist operator capable of mediating the

transition would be the flavor current, which indeed has twist 2. At weak coupling, when

the anomalous dimensions are small, one has that the twist of the lowest twist operator

coincides with the number of partons of the created hadron, which matches the naive parton

counting thus reconciling (4.30) with (4.31). However, at strong coupling generically the

γ might grow large.10 This way, it might be that the dominant operator at weak coupling

has a larger growth of τ , in such a way that at strong coupling some other operator, whose

τ grows in a more controlled way, is indeed the most relevant one. Thus, the particular

scaling (i.e. the lowest τ) will depend on the particular theory, since it explicitly requires

knowing the anomalous dimensions at strong coupling in order to select the operator which

the lowest twist in that coupling region which might mediate the transition.

10Of course, some operators will have protected anomalous dimensions, such as e.g. the stress-energy

tensor in a conformal theory, or a conserved current.
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Let us momentarily digress to discuss the helicities of the in and out hadrons in our

transitions. We saw that in both the π0 − ρ and f0 − ρ cases the transition was purely

transverse. This means that s1 = 0 for the f0/π
0 while s2 = ±1 for the ρ. According to

the selection rule this implies that the part of the current involved in the transition is the

λ = ±1 part, which is indeed what we found (we will see additional consequences of this

when we study the full amplitude). Therefore on general grounds, we expect the matrix

element in (4.31) to scale like

〈h1, s1|Jµ|h2, s2〉 ∼
1

q2τO−3+1
=

1

(q2)τO−1
. (4.32)

Going back to the case at hand, we note that (4.32) is of the form of (4.29) once we identify

τO = ∆. From the generic OPE framework, this suggests that the operator (which is the

lowest twist one capable of creating both hadrons) mediating the transition has twist ∆;

which coincides with the twist of the external hadrons. We stress that this is a result

of the strong coupling explicit computation. Note that in the case at hand we have as

external states a spin 0 hadron (conformal dimension ∆) whose twist is τS=0 = ∆, and a

spin 1 hadron (conformal dimension ∆) whose twist is τS=1 = ∆− 1. Even though τS=1 is

smaller, the lowest twist operator capable of creating both hadrons has τ = ∆. Thus we

can extend (4.30) to strong coupling by replacing n → τ being τ the twist of the external

hadrons, which indeed fully agrees with the results in [27, 28, 15]. This indeed suggests

that the operators mediating the transition are those in section (3).

Note that in order to get this precise scaling the extra suppression by (r2 + L2)−1

in (3.22) is crucial. At this point it is instructive to compare with the form factors com-

puted in [15]. For simplicity let us consider the spin 0 case in that paper.11 The corre-

sponding integral leading to the form factor was very similar to (4.3), but without the extra

suppression by (r2 + L2)−1. This has the non-trivial effect of making the matrix element

scale with an extra power of 1/q−1 (technically it is due to the fact that the first non-zero

derivative of the equivalent F would appear one order beyond). On the other hand these

form factors are between spin 0 states, and thus we expect that the extra suppression due

to helicity flip in (4.32) to be absent. This justifies the extra power of 1/q−1. We can now

re-analyse the appearance of this form factor in view of these results. The scalars of the

theory are real implying that there will be no minimal coupling to the vector field on the

brane. Thus the only possible trilinear combination is the one we obtained which, due to

dimensional reasons, requires the extra suppression with (r2 + L2)−1. Now we re-discover

that the dual statement is that the theory recovers conformal invariance in the UV, which

dictates the scaling of the form factors.

4.5 γ∗γ∗ → π0, F πρ and VMD

The interacting lagrangian (3.22) allows us to study the process γ∗γ∗ → π0 by considering

the two vector fields to be non-normalizable modes. To be more precise, we will consider

the process shown in figure 3.

11With a little bit of more work one can argue the same is true for the other form factors.
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Figure 3: γ∗γ∗ → π process to be considered.

Figure 4: γ∗γ∗ → π after using VMD.

By using the CS interaction (3.22), it is straightforward to see that this amplitude is

given by

iMγ∗γ∗→π =
4

3
T7(2πα

′)3LR4ÎM (q2, p2)

(
∫

√

ĝ Y l

)

[

ǫµναβǫµ(q)ǫν(p)qαpβ

]

, (4.33)

where now ÎM (q2, p2) is given by

ÎM (q2, p2) =

∫

r3

(r2 + L2)3
A(q2)A(p2)ΦM . (4.34)

and ΦM is the radial wavefunction of the π0 with quantum numbers M = (n, l).

We can go to the rest frame of the final hadron, where we have ~q = −~p, q0 + p0 = mπ.

It is straightforward to check that the tensor structure here reduces to mπǫ
ijk0ǫi(q)ǫj(p)qk.

Forgetting for a while about the angular integral, let us define the following form factor

F γ∗π
n =

4

3
T7(2πα

′)3LR4ÎM (q2, p2) . (4.35)

Using the VMD decomposition (see appendix A) we have

ÎM (q2, p2) =
m2

q

λ

∑

n′

fn′,0

p2 +m2
n′,0

∫

r3

(r2 + L2)3
Φn,lΦ

II
n′,0A(q2) ; (4.36)

where fn,0 is the decay constant of the vector meson with quantum numbers n, l = 0. We

can interpret this as in figure 4.

Each term in the sum is then the transition form factor for ρπ, with the caveat that the

intermediate vector meson has l = 0, which follows trivially from VMD since the photon

is the non-normalizable mode with l = 0 of the vector field - and as such can only mix

with vector mesons of l = 0. This suggests that we interpret the integral over the angular

coordinates as ∫

√

ĝ Y lY0 ; (4.37)
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Figure 5: γ∗γ∗ → π in the light of VMD.

where the Y0 spherical harmonic would correspond to the intermediate vector meson (which

has l = 0). Then the normalisation condition requires

∫

√

ĝ Y lY0 = δl,0 ; (4.38)

so the final state will only contain the l = 0 π0 meson. Therefore we can define the full

form factor as F γ∗π
n = 4

3T7(2πα
′)3LR4În,0(q

2, p2), where we make explicit the fact that

only the l = 0 mode contributes. Explicitly

ÎM (q2, p2) =
m2

q

λ

∑

n′

fn′,0

p2 +m2
n′,0

∫

r3

(r2 + L2)3
Φn,0Φ

II
n′,0A(q2) =

m2
q

λ

∑

n′

fn′,0 In,n′,0(q
2)

p2 +m2
n′,0

.

(4.39)

We can re-write our form factor as

F γ∗π
n =

f0,0m
2
qλ

−1F ρπ
0,0,0

p2 +m2
0,0

+

∫ ∞

0
ds

ρh

s+ p2
. (4.40)

where we have separated out the contribution of the ρ meson with quantum numbers (0, 0),

i.e. the lowest one in the KK-tower. This is formula is analogous to the one obtained in

QCD arising from VMD (see for example [45]).

The spectral density reads in this case

ρh = 8cT7(2πl
2
s)

3R4Lm2
qλ

−1
∑

m′ 6=0

fm′,0δ(s −m2
m′,0)

∫

r3

(r2 + L2)3
fn,0Φ

II
m′,0A(q2) . (4.41)

We can use once again the decomposition formula, and write

ρh = 8cT7(2πl
2
s)

3R4Lm4
qλ

−2
∑

m′ 6=0

∑

m′′

fm′,0fm′′,0

q2 +m2
m′′,0

Rn,0,m′,0,m′′,0δ(s −m2
m′,0) . (4.42)

The expression (4.42) for the spectral density follows from vector meson dominance.

The interaction γ∗γ∗π0 (or γ∗γ∗σ) can be seen as γ∗ → ρ and ρρπ0.

Then after separating out the lowest mass state, we have that the spectral density is

just the sum over higher mass states.

It is interesting to look at the large momentum behavior of the above form factor. Note

that, in fact, we could switch the scalar with the pseudoscalar here, and the calculation

– 21 –



J
H
E
P
0
9
(
2
0
0
8
)
1
0
3

proceeds in exactly the same fashion albeit with an additional factor of 2/3. From (4.39)

we see that for large q2

În,n′,0 → m2
qλ

−1
∑

n′

fn′,0

p2 +m2
n′,0

( kmax
∑

k

(

λ2m4
k,0

m4
q

)

fk,0 Rn,0,n′,0,k,0

)(

m2
q

λq2

)3

. (4.43)

From (4.43) we can extract the relevant behavior when one of the virtualities is large

and the other is small to obtain F γ∗π ∼ 1/(q2)3. We can cross-check this result by using the

iterative integration method of section 4. We would like to note that it is straightforward

to reapeat a similar computation with the scalar meson getting the same result up to a

numerical factor.

It is instructive to consider the corresponding process with a vector meson as the final

state, i.e. the process γ∗γ∗ρ. This can be obtained from (5.43) in [15] if we assume the

photon is valued in SU(N). The crucial difference would be that the analog of (4.39) now

reads
˜̂
IM (q2, p2) =

m2
q

λ

∑

n′

fn′,0

p2 +m2
n′,0

∫

r3

(r2 + L2)2
ΦII

n,0Φ
II
n′,0A(q2) . (4.44)

Restricting this to the case of one (almost) on-shell photon and the other with large (virtual)

momentum (p2 ∼ 0, q2 ≫ 1), we can transplant the results of [15], where it was shown

that the integral scales with the second power of 1/q2. Therefore when both photons and

vector meson are polarised in the transverse direction, we find that F γ∗ρ ∼ 1/(q2)2.

Let us return to the pseudoscalar (or scalar) case (γ∗γ∗π0 or γ∗γ∗σ) assuming one

photon with large virtuality and the other almost on-shell. We found that the form factor

scales like 1/q6. This scaling is different to that obtained in QCD, where the γ∗γ∗π form

factor goes like 1/q2. In principle one would expect these two results to match due to

conformal invariance. Nevertheless, the γ∗γ∗π is more subtle than the form factors dis-

cussed above. In pQCD (perturbative QCD) it is dominated by the one-quark propagator

(see for example [42]), which in turn arises from the fact that the π meson is a 2-quark

bound state. By comparison with the case of the form factors, we see that in order to

compare weak coupling results with strong coupling results one needs, at least12 to replace

τ ↔ n. As opposed to the form factors, in the case at hand the fact that the selection rule

sets l = 0 obscures the identification of τ . However we can perform the integrals above

before taking l = 0. One can see that, considering (4.34), in order to have a well-behaved

integral we have to restrict ouselves to even values of l. Under that assumption, one can

check that Î ∼ 1/ql+6, which upon taking l = 0 coincides with the result obtained using

VMD. Since l has to be even, we can re-write it as l = 2l′ in such a way that the integral

goes like 1/(q2)l
′+3. Defining a new twist operator τ = l′ + 3, the actual behavior of the

integral in which we are interested is 1/(q2)τmin , where τmin is the minimal twist, i.e. the

one corresponding to l = l′ = 0. One could also consider the vector meson case for generic

(again even) l, which goes like 1/ql+4. In terms of l′ this reads 1/(q2)l
′+3−1. Define now

τ = l′ + 3 − 1, where the −1 stands for the fact that we have a spin 1 meson. Then the

12The γ∗γ∗π channel is more sensitive to details of the theory than the form factors. It might be that

our theory, being non-perturbatively trivial, simply has a different structure than QCD.
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Figure 6: Physical process.

integral goes again like 1/(q2)τmin . Note how in this case the different suppression factor

(r2 + L2) in the integrand, is crucial to obtain the extra factor of q which allows to inter-

pret the exponent as a spin 1 hadron. Thus we see that the integral actually scales like

1/(q2)τmin for both the vector and scalar cases. The “twist” is defined in terms of half of the

l corresponding to the actual meson state (the factor of 3 is related to the dimensionality

of the “basic” l = 0 state, and it seems reasonable that it should be kept). This suggests

the identification τmin ↔ nmin/2, where nmin is the minimal number of valence partons in

a QCD hadron (i.e. 2 for a meson). Then upon using this dictionary, the form factor would

scale like 1/q2, which is precisely the QCD result. However we must warn the reader that

we do not have any compelling explanation for this identification.

This process has been recently considered [46] in the context of the hard wall model

of [47], obtaining that the large q2 behavior of the form factor matches that of QCD.

However in that case the model is designed to capture the same symmetries as low energy

QCD, so it is expected a good agreement.

5. The complete unpolarized amplitude and inclusive processes

It is interesting to compute the complete amplitude for the processes above. The physical

process which we are actually looking at is really either eπ0 → eρ or ef0 → eρ (or its

crossed channel). Suppose we are interested in the unpolarized cross-section in figure (9).

The matrix element comes from

iM = −e
2

q2
ūs′(k

′)γµus(k) 〈h1|Jµ|ρ〉 . (5.1)

where h1 stands for the initial hadron (either f0 or π0). Actually, the matrix elements

〈h1|Jµ|ρ〉 are nothing buth the ones we already computed.

Squaring, summing over polarizations and averaging over spins, this takes the usual

form

|M|2 =
e4

q4
LµνW

µν , W µν =
∑

pol.

|〈h1|Jµ|ρ〉|2 . (5.2)

We can now computeW µν for each of the two cases in our theory. Interestingly in both cases

the tensor structure leads, after summing over polarizations, to a Callan-Gross relation
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between the “structure functions” (see appendix B). This should come as no surprise. We

explicitly saw how the transverse character of our transitions was responsible for the large

q2 behavior of the form factors. The fact that we recover Callan-Gross scaling here is

another consequence of having a transverse transition.13

Summarizing our results;

f0 meson as in state:

Fn,m,l
1 =

q4

4x2
(F σρ

n,m,l)
2 ; Fn,m,l

2 =
q4

2x
(F σρ

n,m,l)
2 . (5.3)

π0 meson as in state:

Fn,m,l
1 =

q4

4x2

(

1 +
4x2m2

ρ

q2

)

(F πρ
n,m,l)

2 ; Fn,m,l
2 =

q4

2x
(F πρ

n,m,l)
2 ; (5.4)

where we indicate the quantum numbers of the (pseudo)scalar n and vector meson m,

which share the same l. Note that the x above is the Bjorken x, which in our quasielastic

case is fixed eventhough we will keep it as open.

The results above are quite reminiscent of DIS (Deep Inelastic Scattering) structure

functions. Summing over possible final states we can construct an inelastic scattering

amplitude. However we have to remember that our computation does not allow for the

production of high spin states. Therefore if we want to interpret our results in terms of

DIS we have to restrict ourselves to a regime in which the production of such states is

highly suppressed. These high spin states are much more massive than the low spin states

we have been considering in this paper. Therefore if we consider the DIS experiment in

which we have a final state with N particles (in our theory to leading order in λ−1 N = 1)

whose 4-momenta add to W , whilst the initial hadron h and off-shell photon have momenta

respectively p and q - we have the trivial relation W = p+ q. Squaring this we find

W 2 −m2
h = q2

(

1 − 1

x

)

. (5.5)

Since we don’t want to allow for final state masses much larger than the initial state

mass, we should only consider DIS in the region where we take q2 → −∞ and x → 1 in

such a way that W 2 −m2
h remains finite and small. Thus we see that we could only access

the x ∼ 1 (i.e. quasi-elastic) regime of DIS. In principle it should be possible to connect

the threshold regime of the DIS with the form factors. At weak coupling this was studied

in [48, 49], however at strong coupling one must be more careful since the calculation

proceeds slightly differently [28]. Generically one would expect

FDIS
2 ∼ FFormFactor

2 G(q2(1 − x−1)) . (5.6)

However a detailed discussion of these issues is beyond the scope of the current work.

13We thank G. Gabadadze for pointing this out to us.
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6. Conclusions

In this paper we have been concerned with the structure of quark-antiquark bound states

(mesons) at strong coupling. In order to study them we have probed these mesons with an

external electromagnetic field. Together with the results [15, 27], the picture that emerges

is that the large q2 behaviour of the matrix elements is dominated entirely by conformal

invariance. Note that in other holographic QCD models such as the Sakai-Sugimoto model

this is not to be expected, since the asymptotic properties are very different.

This provides some justification as to why the scaling at weak coupling, based on

a naive parton model, extrapolates to the strong coupling regime upon the replacement

n↔ τ , where τ is the twist of the external hadron (which should coincide with the operator

with minimal twist mediating the transition). Even though the generic OPE analysis

would predict that the lowest twist operator will be the one mediating the transition, the

identification of such an operator relies on the particular theory, since it requires to know

the growth of anomalous dimensions. It has to be regarded as a result of our computation

the fact that, consistently with the literature, the τ is that of the external hadrons. In the

particular cases we have studied, the helicity dependence of the matrix elements appears in

a very explicit manner. The U(1) form factors we computed are non-vanishing in the large

N limit, only for different in and out hadrons (i.e. they are transition form factors). As we

pointed out earlier, this is determined by the precise structure of the SUGRA lagrangian.

It also follows from the index structure and reality of the worldvolume fields on the brane,

that the transitional form factors involve fields of different spin. Therefore the helicity

dependence of the matrix elements appears in an explicit manner. The necessary powers

of q2, required to account for the helicity change in the amplitude, have a precise SUGRA

origin in that they arise from terms that are suppressed by additional powers of the warp

factor.

The fact that some form factors are missing is not new [15]. However a full under-

standing of the meson structure from the field theory perspective which would explain

this fact (together with some other issues as the enormous binding energy, for example)

is still lacking. In the gravity language we can argue that the diagonal form factors are

missing due to the fact that real fields are not minimally coupled to a U(1) gauge field,

which results in higher order diagonal form factors. This suggests that the mesons do not

have a dipolar electric moment, which might imply that their binding energy is so big that

they are, for this matter, behaving as pointlike particles. However since the overlap with

different spin mesons is not zero, spin conservation requires that a photon must be emitted

in these spin-changing transitions, rendering the off-diagonal form factors non-zero.

We can imagine a way in which a different structure could arise. Refs. [34] and [35]

studied the Higgs phase of the theory, in which the quarks have a non-trivial VEV and

therefore the theory has a different vacuum structure. In the gravity side this is achieved

by means of a worldvolume instanton on the flavor branes (in order to go to the Higgs

branch of the N = 2 theory one needs at least two flavors - see for example [7]). In the

presence of the instanton, we could imagine new interaction operators emerging such as

∂iΦF
ir
instF

A
rµ∂

µΦ . This term would capture a form factor for Φ. Therefore studying the
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meson structure in the Higgs branch, and comparing it with what it was obtained in the

Coulomb branch could be very interesting.

By using the same tools we computed the γ∗γ∗π form factor. However in that case

the comparison with the weak coupling result is more obscure. This might have to do with

the fact that our mesons carry some part of the adjoint fields which should be properly

taken into account. A priori it looks like our scaling is completely different (1/q6 as oposed

to 1/q2) from that in a weakly coupled theory (such as QCD). Alerted by the experience

with the form factors, where the strong/weak coupling matching in the light of conformal

invariance demands τ ↔ n, we provided a first attempt of such a map by computing the

form factor for generic l. Even though the matching requires some unjustified identification,

we feel that it should be possible to obtain a deeper understanding of the particular scaling

we obtained in the light of conformal invariance. We leave that issue open for future work.

A consequence of gauge/gravity duality is that it satisfies VMD due to the (rather) generic

properties of Sturm-Lioville operators. Since both the gauge field and the vector meson

come from the same PDE, as described in appendix B, VMD follows directly. This allows us

to relate F γ∗π with F ρπ in very much of the same spirit as in QCD - where VMD also holds.

There are a number of things which could be studied further. One is to understand the

connection with inclusive processes (in particular DIS). It should be possible to compute

DIS amplitudes directly in this model. One could consider computing the current-current

correlator using a given hadron and non-normalizable mode wavefunctions, by employing

the usual AdS/CFT methods. Understanding the Bjorken x behavior of the DIS and

computing the actual behavior of G in (5.6) to compare with [28] would be very interesting

and would surely shed more light on the structure of the mesons.

Another extension of our work could be to study the structure of the hadrons at high

temperature. It has been suggested that these mesons could play an important role in the

context of the QGP (see for instance [50] or [51] and references therein) In the Minkowski

phase of [52] mesons still exist. It would be interesting to study the structure of the hadrons

in that phase by probing them with photons. We expect the large q2 behavior should not

differ too much from the zero temperature result, since at q2 ≪ T 2 one would expect to

recover conformal invariance. However the IR behaviour will differ substantially. It would

be interesting to check whether the relations between F ρπ and F σρ continue to be valid,

and if any new form factors appear. A naive analysis in the light of our computations

seems to suggest that there will be no modifications along these lines.

Finally we note that another way of getting vertices allowing for the same meson to

appear as in and out state, could be obtained by considering a pure gauge B-field along

the Minkowski directions - in much the same spirit as in [53]. There are a number of things

which could be studied this way, for example one could study the emission of photons by

mesons in an external magnetic field. Interestingly in this case, even at zero mass the theory

develops a condensate which breaks the U(1)R symmetry. It would be very interesting to

check if one can reproduce more accurately the QCD γ∗γ∗π behavior in this instance.
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A. A brief review of VMD in gauge/gravity

The hypothesis of vector meson dominance (VMD) [54] regards the photon-hadron inter-

action at low energies in terms of an intermediate vector meson (see [55] for a review).

In our D3-D7 model, the mode dual to the EM current corresponds to the non-

normalizable mode of the worldvolume U(1) gauge field on the flavour brane with l = 0.

Restricting to the sector with l = 0, both normalizable (i.e. vector mesons with l = 0) and

non-normalizable (i.e. EM current) modes come from solving the same PDE. This equation

was first written down in [6]. Writing Ψ = eiqxψ, where Ψ stands for either normalizable

or non-normalizable mode, it can be recast in terms of w as follows

∂w

(

4w2∂wψ
)

− w

1 − w

R4q2

L2
∂2

µψ = 0 , (A.1)

For generic q2 we would obtain the non-normalizable mode, whilst the normalizable mode

appears when q2 = m2
n,0. Let us now define

Lψ = ∂w

(

4w2∂wψ
)

; λq =
R4q2

L2
; ρ =

w

1 − w
; L̃ψ = Lψ − λqρψ ; (A.2)

in such a way that the equation for the non-normalizable modes is just L̃A = j upon taking

j = 0. As usual we now write

j(w) =

∫

dw′δ(w − w′)j(w′) , A =

∫

dw′G(w,w′)j(w′) ; (A.3)

where G is the Green’s function.

Clearly L̃ satisfies Green’s theorem, so
∫ 1

0
dw

(

ϕL̃χ− χL̃ϕ
)

= 4
(

ϕ∂wχ− χ∂wϕ)|w=1 ; (A.4)

where we have already eliminated the vanishing contribution from w = 0. We can use (A.4)

with G and A, recalling that the non-normalizable mode satisfies Neumann boundary

conditions at w = 1 - and taking j → 0 we can write the non-normalizable mode as

A(w, q2) = N lim
w′→1

∂w′G(w,w′) ; (A.5)

where N is a constant. Thus we see that the non-normalizable mode is determined in

terms of the Green’s function of L̃. In order to find an expression for G we might consider

the equation

LΦII
n,0 + λnρΦ

II
n,0 = 0 ; (A.6)
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where λn = λq|q2=m2
n,0

. This is nothing but the equation satisfied by the normalizable

modes ΦII
n,0. We keep the subscript 0 to remind the reader that these normalizable modes

correspond to vector fields with l = 0. They satisfy the following completeness and or-

thonormality conditions

∑

n

ρ(w)ΦII
n,0(w)ΦII

m,0 = δ(w − w′) ,

∫ 1

0
dw ρ(w)ΦII

n,0(w)ΦII
m,0(w) = δnm . (A.7)

Then if we consider

G = −
∑

n

ΦII
n,0(w)ΦII

n,0(w
′)

λn + λq
, (A.8)

it is straightforward to check that this solves the Green’s function equation for L̃. Therefore

the non-normalizable mode is given by

A(w, q2) =
m2

q

λ

∑

n

fn,0Φ
II
n,0(w)

q2 +m2
n,0

. (A.9)

and the decay constant of the (n, 0) vector meson is given by

fn,0 = N lim
w′→1

∂w′ΦII
n,0(w

′) . (A.10)

B. On the Callan-Gross relation

We now turn to the appearance of the Callan-Gross relation result in a deeper way. In the

context of VMD it was argued that this type of relation should naturally appear [56]. Also

due to the structure of effective lagrangians we are considering, this could be thought of as

the low energy coupling of the Higgs to photons (see [57, 58]). From that perspective one

could argue that the effective vertex hF 2 involves, in particular, h going into γγ through

a top quark loop. Since the top quark is a spin 1/2 particle for which one expects Callan-

Gross, it seems reasonable to expect that this effective vertex also re-sums Callan-Gross.

B.1 FµνFµν contribution

Consider
∑

ǫ

|(qµξν − qνξµ)(pµǫν − pνǫµ)|2 , (B.1)

where ξ is the polarization vector of an external photon of momentum q and ǫ the polar-

ization of a massive vector particle of momentum p and mass M . In addition ξ · q = 0,

ǫ · p = 0 and −q2 = Q2 < 0. This can be expanded as

4
∑

(

(q · p)2|ξ · ǫ|2 − (q · p)(ξ∗ · ǫ∗)(q · ǫ)(p · ξ) − (q · ǫ∗)(p · ξ∗)(q · p)(ξ · ǫ) +

(q · ǫ∗)(p · ξ∗)(q · ǫ)(p · ξ)
)

= (B.2)

ξ∗µξν

{

4
∑

(

(p · q)2(ǫµ)∗ǫν − (q · p) pµqα(ǫα)∗ǫν

−(q · p) pνqα(ǫµ)∗ǫα + pµpνqαqβ(ǫα)∗ǫβ
)}
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The sum runs over ǫ polarizations, so we have to use

∑

ǫ

(ǫµ)∗ǫν =

(

− ηµν +
pµpν

M2

)

. (B.3)

After a little bit of algebra, one can show that the terms with M cancel out, and one is

left with

4ξ∗µξν

(

− (p · q)2ηµν − q2 pµpν + (q · p) (pµqν + pνqµ)

)

. (B.4)

Consider now

(p · q)2
(

− ηµν +
qµqν

q2

)

− q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

)

, (B.5)

where x = −q2

2(p·q) . After expanding this

−(p · q)2ηµν − q2 pµpν + (p · q) (pµqν + pνqµ) , (B.6)

so finally we have

4ξ∗µξν

(

(p · q)2
(

− ηµν +
qµqν

q2

)

− q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

))

. (B.7)

This we can re-write as

4ξ∗µξν

(

4(p · q)2
q4

q4

4

(

− ηµν +
qµqν

q2

)

+
2x

Q2

q4

2x

(

pµ +
qµ

2x

)(

pν +
qν

2x

))

. (B.8)

where, as already illustrated, −q2 = Q2. Then

∑

ǫ

|(qµξν − qνξµ)(pµǫν − pνǫµ|2 = 4ξµξνŴ
µν , (B.9)

with

Ŵ µν =
q4

4x2

(

− ηµν +
qµqν

q2

)

+
2x

Q2

q4

2x

(

pµ +
qµ

2x

)(

pν +
qν

2x

)

. (B.10)

Therefore

F1 =
q4

4x2
, F2 =

q4

2x
; (B.11)

so clearly F2 = 2xF1.

B.2 FµνFαβǫ
µναβ contribution

Consider now
∑

ǫ

|(qµξν − qνξµ)(pαǫβ − pβǫα)ǫαβµν |2 (B.12)

where again ξ is the polarization vector of an external photon of momentum q, and ǫ is the

polarization of a massive vector particle of momentum p and mass M . In addition ξ ·q = 0,

ǫ · p = 0 and −q2 = Q2 > 0.

Since

(qµξν − qνξµ)(pαǫβ − pβǫα)ǫαβµν = 4qµpαξνǫβǫ
µναβ , (B.13)
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we have, using the expression for the sum over polarizations

16qµqµ̂pαpα̂ξνξ
∗
ν̂ǫ

µναβǫµ̂ν̂α̂β̂

(

− η
ββ̂

+
pβpβ̂

M2

)

. (B.14)

Therefore we get

−16ξµξ
∗
ν

(

(qρpαǫ
µραβ)(qρ̂pα̂ǫ

νρ̂α̂β̂)η
ββ̂

)

(B.15)

Making use of the properties of the ǫ-tensor

(qρpαǫ
µραβ)(qρ̂pα̂ǫ

νρ̂α̂β̂)η
ββ̂

= p2q2
(

− ηµν +
qµqν

q2

)

+(p · q)2ηµν+q2 pµpν−(p·) (pµqν+pνqµ)

(B.16)

Adding and subtracting (p · q)2 qµqν

q2 we can re-write the expression above as

(qρpαǫ
µραβ)(qρ̂pα̂ǫ

νρ̂α̂β̂)η
ββ̂

= (p2q2 − (p · q)2)
(

− ηµν +
qµqν

q2

)

+ q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

)

.

(B.17)

Since p2 = M2 we can re-write this as

(qρpαǫ
µραβ)(qρ̂pα̂ǫ

νρ̂α̂β̂)η
ββ̂

= −q4
(

M2

q2
+

4(p · q)2
4q4

)(

− ηµν +
qµqν

q2

)

(B.18)

− 2x

−q2
q4

2x
q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

)

.

Then

(qρpαǫ
µραβ)(qρ̂pα̂ǫ

νρ̂α̂β̂)η
ββ̂

= −q4
(

M2

q2
+

1

4x2

)(

− ηµν +
qµqν

q2

)

(B.19)

− 2x

−q2
q4

2x
q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

)

.

∑

ǫ

|(qµξν − qνξµ)(pαǫβ − pβǫα)ǫαβµν |2 = 16ξ∗µξνŴ
µν , (B.20)

with

Ŵ µν = q4(
1

4x2
− M2

Q2
)

(

− ηµν +
qµqν

q2

)

+
2x

Q2

q4

2x
q2
(

pµ +
qµ

2x

)(

pν +
qν

2x

)

. (B.21)

In this case

F1 = q4
(

1

4x2
− M2

Q2

)

, F2 =
q4

2x
. (B.22)

However we are working in a regime where M2

Q2 ≪ 1 whilst x is fixed. Then F1 ∼ q4

2x
, so we

have that again

F2 = 2xF1 . (B.23)
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